Denseness of ergodicity for a class of partially hyperbolic volume-preserving flows

نویسندگان

  • Mário Bessa
  • Jorge Rocha
چکیده

Let P be the set of C1 partially hyperbolic volume-preserving flows with one dimensional central direction endowed with the C1flow topology. We prove that any X ∈ P can be approximated by an ergodic C2 volume-preserving flow. As a consequence ergodicity is dense in P. MSC 2000: primary 37D30, 37D25; secondary 37A99. keywords: Dominated splitting; Partial hyperbolicity; Volume-preserving flows; Lyapunov exponents; Stable ergodicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the ergodicity of partially hyperbolic systems

Pugh and Shub [PS3] have conjectured that essential accessibility implies ergodicity, for a C2, partially hyperbolic, volume-preserving diffeomorphism. We prove this conjecture under a mild center bunching assumption, which is satsified by all partially hyperbolic systems with 1-dimensional center bundle. We also obtain ergodicity results for C1+γ partially hyperbolic systems.

متن کامل

Stable accessibility is C dense

We prove that in the space of all Cr (r ≥ 1) partially hyperbolic diffeomorphisms, there is a C1 open and dense set of accessible diffeomorphisms. This settles the C1 case of a conjecture of Pugh and Shub. The same result holds in the space of volume preserving or symplectic partially hyperbolic diffeomorphisms. Combining this theorem with results in [Br], [Ar] and [PugSh3], we obtain several c...

متن کامل

Removing zero Lyapunov exponents in volume-preserving flows

Baraviera and Bonatti in [1] proved that it is possible to perturb, in the Ctopology, a volume-preserving and partial hyperbolic diffeomorphism in order to obtain a non-zero sum of all the Lyapunov exponents in the central direction. In this article we obtain the analogous result for volume-preserving flows. MSC 2000: primary 37D30, 37D25; secondary 37A99. keywords: Dominated splitting; volume-...

متن کامل

Contributions to the Geometric and Ergodic Theory of Conservative Flows

We prove the following dichotomy for vector fields in a C-residual subset of volume-preserving flows: for Lebesgue almost every point all Lyapunov exponents equal to zero or its orbit has a dominated splitting. As a consequence if we have a vector field in this residual that cannot be C-approximated by a vector field having elliptic periodic orbits, then, there exists a full measure set such th...

متن کامل

Abundance of stable ergodicity

We consider the set PHω(M) of volume preserving partially hyperbolic diffeomorphisms on a compact manifold having 1-dimensional center bundle. We show that the volume measure is ergodic, and even Bernoulli, for any C2 diffeomorphism in an open and dense subset of PHω(M). This solves a conjecture of Pugh and Shub, in this setting. Mathematics Subject Classification (2000). 37D30.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008